
Real-time Travel Time Estimation Using Matrix

Factorization?

Tehran, Iran

Ebrahim Badrestania,1, Behnam Bahrakb,1, Ali Elahib,1, Adib Faramarzib,1, Pouria
Golshanradb,1, Amin Karimi Monsefic,1,∗, Hamid Mahinib,1, Armin Zirakb,1,∗

aSharif University of Technology
bUniversity of Tehran

cShahid Beheshti University

Abstract

Estimating the travel time of any route is of great importance for trip plan-
ners, traffic operators, online taxi dispatching and ride-sharing platforms,
and navigation provider systems. With the advance of technology, many
traveling cars, including online taxi dispatch systems’ vehicles are equipped
with Global Positioning System (GPS) devices that can report the location
of the vehicle every few seconds. This paper uses GPS data and the Matrix
Factorization techniques to estimate the travel times on all road segments
and time intervals simultaneously. We aggregate GPS data into a matrix,
where each cell of the original matrix contains the average vehicle speed for
a segment and a specific time interval. One of the problems with this ma-
trix is its high sparsity. We use Alternating Least Squares (ALS) method
along with a regularization term to factorize the matrix. Since this approach
can solve the sparsity problem that arises from the absence of cars in many
road segments in a specific time interval, matrix factorization is suitable for
estimating the travel time. Our comprehensive evaluation results using real

?This research is fully supported by Tap30 co, an online taxi-hailing company in Iran
∗Corresponding authors
Email addresses: badrestani@ce.sharif.edu (Ebrahim Badrestani),

bahrak@ut.ac.ir (Behnam Bahrak), ali.elahi@ut.ac.ir (Ali Elahi),
adib.faramarzi@ut.ac.ir (Adib Faramarzi), pouria.golshanrad@ut.ac.ir (Pouria
Golshanrad), A_karimimonsefi@sbu.ac.ir (Amin Karimi Monsefi),
hamid.mahini@ut.ac.ir (Hamid Mahini), armin.zirak97@ut.ac.ir (Armin Zirak)

1All names are listed alphabetically

Preprint submitted to Transportation Research Part C: Emerging Technologies December 3, 2019

ar
X

iv
:1

91
2.

00
45

5v
1

 [
cs

.L
G

]
 1

 D
ec

 2
01

9

data provided by one of the largest online taxi dispatching systems in Iran,
shows the strength of our proposed method.

Keywords: Travel Time Estimation, Matrix Factorization, GPS Data

1. Introduction

Travel time estimation in a city is a challenging and important task used
for trip planners, traffic operators, online taxi dispatch and ride-sharing plat-
forms, and navigation provider systems. The 2007 urban mobility report [1]
states that traffic congestion causes 4.2 billion hours of extra travel in the
United States every year, which accounts for 2.9 billion extra gallons of fuel,
which cost taxpayers an additional $78 billion. On the other hand, travel
time estimation can help traffic operators have a deeper understanding of
the current traffic flow and online taxi dispatch systems to estimate ride
fares more accurately based on the current traffic conditions of a city. Travel
time information, as a by-product, can also be used in navigational systems
to suggest the fastest route with the least amount of traffic.

Travel time data are collected through different means such as inductive
loops, surveillance cameras, or mobile devices and vehicles equipped with a
Global Positioning System (GPS) device. Since loop detectors and surveil-
lance cameras are not available in all regions of a road network, especially
the regions that are less congested, many recent proposed methods focus on
using GPS data to estimate or predict the travel times [1, 2, 3, 4]. These
devices can be used to communicate the current location of a moving vehicle
along with time of the day to a central server every few seconds. The result
is a massive data-set of time-based GPS trajectories.

Although there has been a focus on the problem of travel time estima-
tion in the recent years [5, 6, 7, 8], the task is still challenging, and many
unresolved issues remain. Most of these papers focus on estimating travel
times which are related to exceptional routes such as highways, and many of
them consider unrealistic assumptions such as lack of data sparsity in the en-
vironment which is an issue that impacts the performance of the estimation
method significantly. Another disadvantage is high computation complex-
ity of most proposed methods, which in some cases can be impractical in
real-world scenarios or for real-time applications [9, 10, 11, 12].

Motivated by these challenges, we study the travel time estimation in
Tehran road network using the GPS data gathered from moving taxis of an

2

online taxi dispatch system, in an unconditioned environment that suffers
from data sparsity, and propose a method that is not restricted to highways
or arterial roads and can be performed efficiently in a real-time manner.

We use matrix factorization alongside Alternating Least Squares (ALS)
method to estimate the travel time of each road segments in a given time
interval. The final matrix is computed in an iterative fashion with the his-
torical data and then further improved using recent real-time data. Unlike
many other methods that need to estimate the travel time on each segment
individually, this method can propose estimations for all segments at all
time-intervals, simultaneously [13, 14].

The rest of this paper is organized as follows. In Section II, we discuss
multiple travel time estimation techniques related to our work. We introduce
matrix factorization with ALS method that is used to estimate travel times,
in Section III. Section IV includes our evaluation results for the proposed
method, and finally, Section V concludes the paper.

2. Related Work

Proposed methods for travel time estimation use different types of data
for this purpose. Older models have used the Kalman Filter technique along-
side the data provided by loop detectors and probe vehicles to estimate the
travel times using all similar trips existing in historical data [15]. Modern
approaches for travel time estimation can be classified into four main cate-
gories:

• Origin-Destination-based approaches

• Segment-based approaches

• Sub-path-based approaches

• Neural Network approaches

2.1. Origin-Destination-based approaches

Origin-Destination-Based approaches use the location and time of trips’
origins and destinations, instead of using all information about road segments
and the GPS points. Some methods first tessellate the city with horizontal
and vertical guidelines and then estimate the travel times based on the tiles
that the origin and destination of a trip fall into. Other similar statistical

3

Figure 1: Similar Trips Based on the Origin and Destination

models have been proposed to estimate the travel times based on the trips
that have similar origin/destination pair to the query trip [16, 17, 18].

Hongijan et al. proposed a solution that averages all the travel times of
similar trips based on the origin and destination locations after regularizing
them [5]. This solution is analyzed thoroughly in our paper, and compared
to our proposed method. In [19], Jindal et al. propose a multi-layer feed-
forward neural network for travel time estimation called Spatio-Temporal
Neural Network (ST-NN). It takes the latitudes and longitudes of the origin
and destination points as input and combines them with the time information
to estimate the trip duration. These methods have a hard time utilizing the
raw features such as origin, destination, departure time, and need to learn
feature representation to improve their models.

2.2. Segment-based approaches

These methods estimate the travel time on each individual segment of the
path, assuming that the path of the trip is given or calculated beforehand,
and then sum the estimated travel times of each segment to get the path
travel time. Proposed methods use different data to train their models,
including loop-detectors that gather the data of vehicles passing over them,
surveillance cameras, and moving cars equipped with a GPS module from
which each location is sent to a central server.

Some methods try to infer vehicle speed from loop detectors and then
estimate travel time on each individual path segment based on those record-

4

Figure 2: Trips with Similar Sub-Paths

ings.
Nakata et al. [20] treats the data of travel time as time series, and employ

statistical models such as the autoregressive (AR) and state-space models to
obtain precise estimation function.

2.3. Sub-path-based approach

These methods try to estimate the time of the whole path by the similar
sub-paths of historical trips.

Rahmani et al. propose concatenating the sub-paths to estimate accurate
travel times [21]. Hongijan et al. mine the frequent patterns in the sub-
paths and then find the optimal way to concatenate those sub-paths [22].
These methods have two major drawbacks for real-time usage: (1) finding
the similar sub-paths can be computationally inefficient, especially when we
want to estimate travel time in a real-time manner, and (2) there might
not be enough sub-paths to take into account. This problem can have a
deeper impact on accuracy when we have a lot of segments that are not used
frequently and have infrequent or no data available.

2.4. Neural Network approaches

These approaches use different types of inputs and train a neural network
model to estimate the travel time of a trip using historical data. Wu et al.
model trajectory data with a recurrent neural network (RNN), capturing
long-term historical data dependencies and patterns [23]. Gao et al. try

5

Figure 3: Partitioning of Tehran

to represent the underlying semantics of mobility patterns by using RNN
with embeddings [24]. Zhang et al. partition the whole network into N ×N
disjoint but equal-sized grids, like what was done in Origin-Destination-Based
approaches, and feed this data into a multi-layer neural network with short-
term and long-term traffic feature extraction[25]. In general, neural network
approaches achieve a better accuracy comparing to statistical methods, but
they require a significant amount of data to thrive. Our data dimension
is rather large compared to its number of records thus, using the neural
networks model could not extract patterns and relations between the features
efficiently.

The model proposed in [26] feed the data from 15 minutes intervals to a
neural network and attempts to predict the volume for the next 15 minutes.
Although the accuracy of the proposed method is high, the experiments are
limited, and the validation is only done on a three-point express-way during
daytime hours.

Some methods explore physical relationships between travel time and
other traffic factors such as traffic condition, weather, signal timings, and so
on, to have a more accurate travel time estimation. However, these kinds of
additional data might not always be available.

It should be noticed that some of the proposed methods do not perform
well in real-time scenarios, for two reasons:

6

• Parameter decisions in neural networks, efficient pattern finding, and
matching in sub-pattern based approaches and coefficient estimation
in statistical models all need to be dynamic, due to the nature of the
real-time applications.

• The parameters for these approaches are trained for specific scenarios
defined for their testbeds, e.g. highways and intersections, which leads
to overfitting in an all-purpose scenario.

3. Methodology

We are going to introduce the architecture of a general matrix factoriza-
tion model which is used for estimating the speed of segments in the graph
of a base-map. Base-map is a directed graph which consists of nodes and
segments. Each segment connects to two nodes with a direction. For each
week, we build a matrix, where its rows represent road segments, and each
column is responsible for a time interval of the week. Each cell of this matrix
is filled with observations of the relevant segment and time interval of that
week. Then, we use the average of these weekly matrices to build the ag-
gregation matrix. Our goal is capturing the correlation among segments at
different times. We utilize the matrix factorization (MF) method to find this
correlation. MF helps us in solving the sparsity issue and reducing the noise
of data. The MF model will be applied to the aggregation matrix to esti-
mate the average vehicle speed in each segment. After that, we use real-time
data to improve our estimation. We build a vector of the real-time speed in
segments and apply the MF model on this vector to estimate the final speed
for segments.

3.1. Data Gathering

In this stage, we collect and match the locations of the drivers to the base-
map and calculate the speed of the vehicles on each segment. The drivers
move along the segments and send their locations coordination for each time
interval. Since GPS data can have a lot of noise, especially in places with
tall buildings and other obstacles, we map-match every reported GPS data
to the nearest segment, as the data arrives.

We consider the locations of the vehicles batch by batch. In each batch,
we have some locations sequences of the vehicles. After mapping the locations
to their related segments, we calculate the average speed between each pair

7

of the locations. Suppose we have two locations l1 and l2 which a driver sent
at timestamps t1 and t2, respectively. Then we use the formula 1 to calculate
the speed of the vehicle between these locations. In this formula, ||l2 − l1||
means the haversine distance between l1 and l2.

speed =
||l2 − l1||
t2 − t1

(1)

3.2. Data Aggregation

As declared in the previous subsection, the time-segment matrix is gener-
ated with real-time data using the reported data from GPS-equipped devices
passing through the segments. Many data cells do not have any data since
not all segments contain a moving GPS device (e.g., a vehicle) in all-time
intervals. If multiple cars have passed a certain segment in a time interval,
their average speed would be used, and if there were no cars that have passed
a segment in a time interval, the speed would be considered zero. Now, we
have a matrix which the cellij represents our estimated speed of segment i
at time interval j.

One of the main issues when working with travel time estimation is the
negative effect of data sparsity on accuracy. If we use small time-intervals,
e.g., 5 seconds, there are a lot of cells containing zero, and if we use large
time intervals, e.g. 12 hours, many zero cells would be eliminated, but the
result is not reliable because of the nature of traffic and how it changes in
practice.

To fix the data sparsity issue and also denoising the values of a matrix,
we start with a low-rank approximation of the time-segment matrix T. The
average speed of vehicles in a segment and at a specific time interval can
be modeled through the inner product of the time feature vector and the
segment feature vector.

3.3. Problem Definition

Definition 3.1. A path P is defined as a sequence of GPS observations.
Each observation consists of a location, i.e., (latitude, longitude), and the
timestamp of submission.

Definition 3.2. A trip x(i) = (o(i), d(i), t(i), τ(i), P (i)) is defined as a tuple
with five components where o(i) denotes the origin location, d(i) denotes
the destination location, t(i) denotes the departure time, τ(i) denotes the
duration and P (i) represents the corresponding path of this trip. Then,

8

the historical trip dataset with N trips can be represented as a set of trips
X = x(i)|i = 1, 2, · · · , N .

In our problem, we define a trip as (o(i), d(i), t(i), s(i)) where o(i) denotes
the trip origin, d(i) denotes the destination, t(i) represents the departure time
and s(i) denotes the trajectory of this trip as a sequence of timestamped GPS
readings. Our dataset consists taxi trips, each containing origin, destina-
tion, departure and arrival time and the trip trajectory which is a sequence
of latitude and longitudes reported along the path. Real-time travel time
estimation is defined as: given an origin, destination and departure time,
estimate the time it takes for a vehicle to transport from the origin to the
destination on a predetermined path using historical and real-time trips from
the dataset.

The path of the trip is calculated using the Dijkstra’s shortest path find-
ing algorithm [17], and then the segments of the path are extracted. We
use matrix factorization to estimate the speed of vehicles in each segment
simultaneously, and then sum up all the estimated travel times for those
segments.

3.4. Matrix Factorization Model

Matrix factorization is the breaking down of one matrix into a product
of multiple matrices. It is well studied in mathematics and is widely used for
different applications such as astronomy, data mining, bioinformatics, and
signal processing.

In our problem, let T = {tij}nh∗ns
denote the time-segment matrix, where

each cell tij represents the speed of vehicles in the corresponding segment j
at time interval i, nh represents the total number of time intervals, and ns
represents the total number of segments. The time and segment feature
vectors can be defined as H = [hi] and S = [sj] where hi ∈ IRnf , si ∈ IRnf

and nf is the dimension of the feature space, for all i = 1...nh and j = 1...ns.
In this problem, nf denotes the number of hidden variables in the model that
need to be estimated using historical and real-time data. Since traffic data
is not completely predictable, we minimize the total loss function of H and
S to obtain the matrix T .

We can define the single loss due to a single-speed as:

L2(t, h, s) = (t− < h, s >)2 (2)

9

The total loss function is defined as:

Lemp(T,H, S) =
1

n

∑
(i,j)∈P

L2(tij, hi, sj) (3)

In this equation, P is the index set of the known speeds and n is the size
of P . We can then calculate the low-rank approximation using the following
equation:

(H,S) = argmin
(H,S)

Lemp(T,H, S) (4)


t11 t12 . . . t1ns

t21 t22 . . . t2ns

...
...

. . .
...

tnt
1 tnt

2 . . . tnt
ns

 =


h11 h12 . . . h1nf

h21 h22 . . . h2nf

...
...

. . .
...

hnh
1 hnh

2 . . . hnh
nf

 ∗

s11 s12 . . . s1ns

s21 s22 . . . s2ns

...
...

. . .
...

s
nf

1 s
nf

2 . . . s
nf
ns

 (5)

The matrices H and S resulted from factorization contain important in-
formation, the matrix H represents how much each time interval is related
to a given feature, and the matrix S represents how much each feature is
important for each segment.

To learn the two matrices H and S, an iterative process called alternating
least square (ALS) can be performed as described below.

1. Initialize matrix S by assigning the average speeds for that segment to
the first row, and small random numbers for the remaining entries.

2. Fix S, find values for T by minimizing the objective function in Eq. 3.
3. Fix T and find values for S that minimize the objective function (similar

to step 2).
4. Repeat steps 2 and 3 until a certain stopping criterion is met.

The stopping criteria is usually set by an error function. In our problem,
there are nh × nf parameters for time interval and ns × nf parameters for
road segments that need to be determined. If the number of parameters
nf is large we may encounter the problem of overfitting the data. We use
Tikhonov regularization to avoid overfitting as represented in [27]:

Lregλ (T,H, S) = Lemp(T,H, S) + λ(||UΓH ||2 + ||UΓS||2) (6)

We use the weighted λ-regularization formula described in (7).

f(H,S) =
∑

(i,j)∈P

(tij − hisj)2 + λ(
∑
i

nhi ||hi||2 +
∑
i

nsi ||si||2) (7)

10

In Eq. (7), nhi and nsj denote the number of segment-speeds for time
interval i and segment j, respectively. To determine the matrix H when
S is given, we solve a regularized linear least-squares problem that involves
the segment speeds of the time interval i and the feature matrix sj for the
segment speeds which are related to the time interval i. Similar to [27], we
can compute hi and sj as follows:

hi = A−1i Vi,∀i (8)

sj = A−1j Vj,∀j (9)

Ai = HP (s)iH
T
P (s)i

+ λnhiE (10)

Vi = HP (s)iR
T (i, P (s)i) (11)

Aij = SP (t)jS
T
P (s)i

+ λnsiE (12)

Vij = SP (s)iR(P (t)j, j) (13)

where P (s)i denotes the number of segments that have a segment-speed
for time interval i and similarly, P (t)j denotes the number of time intervals
that had a segment-speed for segment j. E is the nf × nf identity ma-
trix, H(P

(s)i) denotes the sub-matrix of H with selected rows of j ∈ P (s)i,
S(P

(t)j) denotes the sub-matrix of S with selected columns of i ∈ P (t)j,
R(i, P (s)i) is the columns vector where rows j ∈ P (s)i of the i-th column of
R is taken and R(P (t)j, j) is the row vector where columns i ∈ P (s)i of the
j-th row of R is taken.

For this method to work, we also need to determine the number of features
nf . This number can be estimated through trial runs of the algorithm with
different values for H, because for each dataset, the number of features would
be different.

3.5. Online Data

The next challenge is updating the time-segment matrix for new time
slots. The simplest way is to add new time slot traffic segments as a column
to the time-segment matrix and run the matrix factorization algorithm again

11

but it would consume high processing resources as it is shown in Eq. (5).
Adding a new column to the time-segment matrix would affect the matrices
H and S, but we can assume that the old matrix S could still be used for
new time slots to prevent redundant heavy processing, and update S after
a specific number of time intervals. Using this method, only a new column
would be added to the matrix H, also for the next time intervals, the added
column values should be updated by related time slot’s information.

According to Eq. 14 for estimating matrix H’s new row values, we can
use the linear relation between matrix S and matrix T ’s rows.

[
t
nt+1

1 t
nt+1

2 . . . tnt+1
ns

]
=
[
h
nt+1

1 h
nt+1

2 . . . hnt+1
nh

]
∗


s11 s12 . . . s1ns

s21 s22 . . . s2ns

...
...

. . .
...

snh1 snh2 . . . snhns

 (14)

4. Experiments

In this section, at first, we describe our dataset, and some preprocesses
which should be done before running the experiments. After that, we in-
troduce a method which is used for comparison with our proposed method.
The performance of the two methods on the dataset would be compared and
analyzed.

4.1. Dataset

To train and test our proposed model, we use passenger travel data of
Tap30, an online taxi dispatch system that operates in Iran. The travel data
are gathered in the city of Tehran, from October 1st to November 23rd, 2018.
The data consists of the origin and destination of travels and the timestamps
for each travel, and its size is about 50 Gigabytes. Furthermore, we use the
GPS data of the taxis, which consist of coordinates of taxis, accuracy of the
given location, and time. A sample of these GPS data points are shown in
the Fig. 4. We use travel data of the last week in the dataset for the model
validation and the rest of the data for training.

4.2. Data Cleaning

For evaluation, we only consider the trips that take from 10 to 45 minutes.
Also, the trips with relevant negative comments from the passengers (e.g.
”The driver selected a bad route”) are ignored. About 20 percent of the trips

12

Figure 4: GPS Data Distribution on One Day

Figure 5: Travel Time Statistics

are removed after cleaning the data. The distribution of the travels’ duration
is shown in Fig. 5. This plot shows that about 80 percent of the travels are
done in less than 30 minutes, and a few outliers had a longer duration. Most
of the trips take less than 20 minutes which shows the importance of the
estimation for short trips.

4.3. Evaluation

For evaluation and comparison of our proposed method, we implemented
Hongijan’s method [5] and evaluated its performance on our dataset. This
method basically uses average travel time of historical trips between two
points to estimate the travel time. The trips with origin and destination

13

Metric MAPE RMSE MAE 95%
TAP30 16.7 341s 252s 41%
Hongijan 20.5 420s 292s 54%

Table 1: Models’ Overall Performances Comparison

close to the current trip are used as historical data. Traffic variance at
different times have been resolved by making use of traffic patterns. One
possible advantage of this model is that as it does not use GPS data, the
lack of data for some streets and tunnels does not damage its performance.

The performance of this method on our data for different hours of the day
is shown in Table 1. This table shows that our proposed method outperforms
the Hongijan’s method. In addition, because of the restrictions of the radius
parameter value, the Hongijan’s method is not able to estimate the arrival
time for some trips.

We also implemented a modified version of the Hongijan’s method using a
KD-Tree data structure to increase its performance, but our proposed method
still has a lower response time.

Furthermore, the Mean Absolute Percentage Error (MAPE) metric is
used to compare the two methods. Since a high percentage of our dataset
consists of short trips, which last less than thirty minutes, MAPE, which
is highly sensitivity to those trips, can measure the performance of these
methods effectively. Moreover, the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) metrics are used for further evaluation, but we
believe that they are not as important as MAPE because these two metrics
do not reflect errors for short trips.

MAPE =
100%

n

n∑
t=1

∣∣∣∣etyt
∣∣∣∣ (15)

MAE =
1

n

n∑
j=1

|ŷj − yj| (16)

RMSE =

√√√√ 1

n

n∑
t=1

e2t (17)

14

Figure 6: Models Comparison w.r.t. Travel Time

4.4. Results

To analyze our proposed method, the results for different hours of day are
compared with Hongijan’s method. Results show that Hongijan’s method is
not able to estimate time of arrival for 524 rides out of 141121 rides used for
evaluation, which is about 0.4% of the test data. Since these rides do not
have much impact on the final assessments, we remove them from the test
data when comparing the two methods.

As shown in the Table 1, MAPE of the two methods are compared. The
values for the proposed method and Hongijan’s method are 16.7 %, 20.5
%, respectively, which indicates that our proposed method has a lower es-
timation error. Based on the data shown in Table 1, the proposed method
outperforms Hongijan’s method in all metrics.

Short trips have an impact on the result of the origin-destination-based
methods. As shown in Fig. 6, Hongijan’s method is more error-prone to
shorter trips than longer trips which take more than 30 minutes. This method
performs better for the trips that are longer than 30 minutes. Two reasons
can explain this: (1) in our proposed method the route’s traffic is only cal-
culated at the beginning of the trip, but it can change as we get close to
the end of the trip, (2) our method does not consider delays in some in-

15

Figure 7: Models Comparison w.r.t. Hour of Week

tersections, and the total error for the route is summed by the errors for
each of those intersections, which adds up to larger amount for longer trips.
On the other hand, none of the mentioned problems can affect the error of
origin-destination-based methods because those changes and delays are also
considered in similar travels.

Fig. 7 illustrates the estimation error of the models with respect to hours
of the week which demonstrates the superiority of the proposed method.

Estimation error comparison of the two methods for different hours of
the day in Fig. 8 shows that when the number of trips is high - about 8 am
and 4 pm - Hongijan’s method performs better or the same as the proposed
method. As mentioned earlier, one reason for this difference is that our
proposed method calculates the traffic at the beginning of the trip, and at
these hours traffic congestion is highly variable in Tehran. But for other
hours of the day, our method can achieve higher accuracy.

Moreover, the models’ estimation error aggregation for days of a week is
demonstrated in the Fig. 9 which shows the robustness of our method. In
fact, Hongijan’s method’s error fluctuates much more on different days.

As the experiments show, our proposed method’s estimation accuracy is
better than Hongijan’s method for short trips which are a significant pro-

16

Figure 8: Models Comparison w.r.t. Hour of Day

Figure 9: Models Comparison w.r.t. Day of Week

17

portion of the trips. The fact which makes the Hongijan’s method more
desirable is its independence of GPS data. If the GPS data were not avail-
able, Hongijan’s method would be preferred. But, providing with those data,
our proposed method has a better accuracy, less response time, and more ro-
bustness.

5. Conclusion

In this work, we proposed a real-time and scalable model for estimating
time of arrival using online massive dense GPS trajectories. The number of
road segment in a city is so large that sparsity and noise are the main prob-
lems for estimating the speed of each road segment, independently. Thus, we
used a matrix factorization algorithm called ALS-WR to reduce the dimen-
sionality of the problem.

We used the duration of real rides of an online taxi platform as the ground
truth for evaluating our model and calculated some error factors like MAPE
over it. We also implemented Hongijans method to compare our result with
it. As shown in the experiment section, our method outperforms Hongijans,
in many ways including accuracy, response time, scalability, robustness to
amount of available data, and robustness to unpredictable events since we
use online stream of data. But there are also some advantages for Hongijans
method over ours, mainly accuracy of travel time estimation for long trips.

References

[1] T. Hunter, R. Herring, P. Abbeel, A. Bayen, Path and travel time
inference from gps probe vehicle data, NIPS Analyzing Networks and
Learning with Graphs 12 (2009) 1–8.

[2] W.-H. Lin, J. Zeng, Experimental study of real-time bus arrival time
prediction with gps data, Transportation Research Record 1666 (1999)
101–109.

[3] Y. Li, M. McDonald, Link travel time estimation using single gps
equipped probe vehicle, in: Proceedings. The IEEE 5th International
Conference on Intelligent Transportation Systems, IEEE, pp. 932–937.

[4] S. Amin, S. Andrews, S. Apte, J. Arnold, J. Ban, M. Benko, R. M.
Bayen, B. Chiou, C. Claudel, C. Claudel, et al., Mobile century using
gps mobile phones as traffic sensors: A field experiment (2008).

18

[5] H. Wang, X. Tang, Y.-H. Kuo, D. Kifer, Z. Li, A simple baseline for
travel time estimation using large-scale trip data, ACM Transactions on
Intelligent Systems and Technology (TIST) 10 (2019) 19.

[6] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, Y. Liu, Multi-task repre-
sentation learning for travel time estimation, in: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ACM, pp. 1695–1704.

[7] M. Gentili, P. B. Mirchandani, Review of optimal sensor location models
for travel time estimation, Transportation Research Part C: Emerging
Technologies 90 (2018) 74–96.

[8] L. Zhu, F. Guo, J. W. Polak, R. Krishnan, Urban link travel time esti-
mation using traffic states-based data fusion, IET Intelligent Transport
Systems 12 (2018) 651–663.

[9] P. Olszewski, T. Dybicz, K. Jamroz, W. Kustra, A. Romanowska, As-
sessing highway travel time reliability using probe vehicle data, Trans-
portation Research Record 2672 (2018) 118–130.

[10] Y. Hou, S. E. Young, K. Sadabadi, P. SekuBa, D. Markow, Estimating
Highway Volumes Using Vehicle Probe Data-Proof of Concept, Technical
Report, National Renewable Energy Lab.(NREL), Golden, CO (United
States), 2018.

[11] S. Oh, Y.-J. Byon, K. Jang, H. Yeo, Short-term travel-time prediction
on highway: A review on model-based approach, KSCE Journal of Civil
Engineering 22 (2018) 298–310.

[12] Y. Lee, C.-H. Wei, K.-C. Chao, Evaluating the effects of highway traffic
accidents in the development of a vehicle accident queue length estima-
tion model, International journal of intelligent transportation systems
research 16 (2018) 26–38.

[13] P. Paatero, U. Tapper, Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics 5 (1994) 111–126.

[14] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, Computer (2009) 30–37.

19

[15] J. Rice, E. Van Zwet, A simple and effective method for predicting travel
times on freeways, IEEE Transactions on Intelligent Transportation
Systems 5 (2004) 200–207.

[16] D. Huang, Z. Liu, P. Liu, J. Chen, Optimal transit fare and service
frequency of a nonlinear origin-destination based fare structure, Trans-
portation Research Part E: Logistics and Transportation Review 96
(2016) 1–19.

[17] S. Yang, C. An, Y.-J. Wu, J. Xia, Origin–destination-based travel time
reliability, Transportation Research Record 2643 (2017) 139–159.

[18] F. A. Silva, A. Boukerche, T. R. B. Silva, F. Benevenuto, L. B. Ruiz,
A. A. Loureiro, Odcrep: Origin–destination-based content replication
for vehicular networks, IEEE Transactions on Vehicular Technology 64
(2015) 5563–5574.

[19] I. Jindal, X. Chen, M. Nokleby, J. Ye, et al., A unified neural network
approach for estimating travel time and distance for a taxi trip, arXiv
preprint arXiv:1710.04350 (2017).

[20] T. Nakata, J.-i. Takeuchi, Mining traffic data from probe-car system for
travel time prediction, in: Proceedings of the tenth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM,
pp. 817–822.

[21] M. Rahmani, E. Jenelius, H. N. Koutsopoulos, Route travel time es-
timation using low-frequency floating car data, in: 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013),
IEEE, pp. 2292–2297.

[22] Y. Wang, Y. Zheng, Y. Xue, Travel time estimation of a path using
sparse trajectories, in: Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ACM, pp.
25–34.

[23] H. Wu, Z. Chen, W. Sun, B. Zheng, W. Wang, Modeling trajectories
with recurrent neural networks, IJCAI.

20

[24] Q. Gao, F. Zhou, K. Zhang, G. Trajcevski, X. Luo, F. Zhang, Identifying
human mobility via trajectory embeddings., in: IJCAI, volume 17, pp.
1689–1695.

[25] H. Zhang, H. Wu, W. Sun, B. Zheng, Deeptravel: a neural network
based travel time estimation model with auxiliary supervision, arXiv
preprint arXiv:1802.02147 (2018).

[26] W. Zheng, D.-H. Lee, Q. Shi, Short-term freeway traffic flow prediction:
Bayesian combined neural network approach, Journal of transportation
engineering 132 (2006) 114–121.

[27] Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan, Large-scale parallel col-
laborative filtering for the netflix prize, in: International conference on
algorithmic applications in management, Springer, pp. 337–348.

21

	1 Introduction
	2 Related Work
	2.1 Origin-Destination-based approaches
	2.2 Segment-based approaches
	2.3 Sub-path-based approach
	2.4 Neural Network approaches

	3 Methodology
	3.1 Data Gathering
	3.2 Data Aggregation
	3.3 Problem Definition
	3.4 Matrix Factorization Model
	3.5 Online Data

	4 Experiments
	4.1 Dataset
	4.2 Data Cleaning
	4.3 Evaluation
	4.4 Results

	5 Conclusion

